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Abstract. We consider the motion of a charged quantum particle on a loop with two 
external leads which is placed into an electrostatic field. The loop Hamiltonian is chosen 
in the simplest possible way; in order to join it to the free Hamiltonians describing the 
leads, we employ a method based on self-adjoint extensions. Under a symmetry require- 
ment, the resulting full Hamiltonian contains four free parameters; each junction is 
characterised by a pair of them. The system under consideration represents a model of 
metallic or semiconductor structure that can be fabricated by presently available tech- 
nologies. Assuming the ballistic regime for electrons in such a structure, we calculate the 
resistance dependence on intensity of the external field. The results suggest the possibility 
of constructing quantum interference transistors whose size and switching voltage would 
be much smaller than in current microchips. 

1. Introduction 

The rapid development of the techniques of fabricating small metallic or semiconductor 
structures has opened up an entirely new field of research which is sometimes dubbed 
mesoscopic physics. The term expresses the fact that, while the structures involved 
are designed by experiment (i.e. in a macroscopic way), they are small enough to 
exhibit typical quantum effects. Conductivity measurements have been performed on 
various structures: rings, squares and their sequences, honeycomb networks, etc (see, 
for instance, Bishop et a1 1985, Chandrasekhar et aZ1985, Pannetier et a1 1983, Umbach 
er a1 1984,1986). Most attention has been paid to the Aharonov-Bohm effect 
manifested by magnetoresistence oscillations which represent a suitable object for 
experimental investigation, being stable with respect to variations of the pattern 
geometry. 

There are other interesting situations, however. It is natural to ask, for example, 
what happens if the structure is placed into an electric field, in particular how its 
resistance depends on the field intensity. Such an experiment will produce, of course, 
a negative result for metallic structures because of screening. On the other hand, a 
non-trivial effect may appear on semiconductor structures. The possibility is technically 
attractive, because it might open the way to a new type of switching device. In order 
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to decide whether such a prospect is realistic, a careful analysis is needed. In this 
paper, we address ourselves to this problem. 

From the microscopic point of view, the system under consideration is complicated 
enough to make its complete description very difficult. We shall not attempt to do it. 
Instead, we are going to construct a model which, as we believe, reproduces the essential 
features of the system, and at the same time is solvable. It is based on the assumption 
that the ‘wires’, which are building elements of the structure, are infinitely thin. Actually 
they represent a band of atoms whose width can be made as small as 200A by the 
technologies mentioned above. Once we replace them by lines, our problem reduces 
to the analysis of motion of a quantum particle which is confined to an appropriate 
planar graph and subjected to the electric field. We limit ourselves to the simplest 
non-trivial case when the graph consists of a loop with two external leads. We also 
assume that the external field is weak enough so that the semiclassical approximation 
may be used. 

Let us describe briefly the contents of the paper. In the next section we show how 
and under which assumptions the conductivity can be calculated. The key element of 
the model is to describe how the electron wavefunction ‘splits’ at the junctions. This 
is discussed in § 3; it allows us to choose the Hamiltonian for a charged particle whose 
motion is confined to a planar curve in the presence of an external field. In the next 
section, the transmission coefficient is calculated. Its evaluation requires the knowledge 
of transfer matrices for the corresponding Schrodinger equations; we calculate them 
in 0 5 using the semiclassical approximation. In conclusion, we give some examples 
of conductivity against field intensity plots which show that the prospect of constructing 
the above-mentioned switching devices is fully realistic. 

2. The physical background 

As we have said, our model is intended to describe a charged quantum particle (an 
electron) moving on a loop with two external leads under influence of 

( a )  a voltage U applied to the leads, and 
( b )  a homogeneous electric field of intensity parallel to the graph plane and 

The motion on the loop is assumed to be ballistic, i.e. both the elastic and inelastic 
perpendicular to the leads. 

scattering is negligible (see figure 1 ) .  

Figure 1. A loop with external leads in an electric field parallel to the graph plane: U, and 
I ,  are the appropriate wavefunctions and lengths of graph legs, respectively. 
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Such a system can be prepared, e.g., by a recently reported technology (Temkin et 
a1 1987), in which one first prepares a semiconductor layer on a substrate and draws 
metallic lines on it lithographically. Afterwards, the graph is used as a mask when the 
layer is removed by ion bombarding. 

Let us remark that the problem discussed here is related to that for the electrically 
controlled interference in sandwiched semiconductor heterostructures, which was also 
proposed as a basis of a switching device (or quantum interference transistor-see 
Datta et a1 (1986)). In this case, however, the channel width cannot be neglected, 
which makes the graphs more suitable; we shall return to this problem in the conclusion. 

The essential assumption of our model is that the electrons move ballistically on 
the loop. It can be fulfilled if the electron mean free path in the semiconductor material 
is much longer than the loop size. This quantity depends heavily on how much the 
material is doped and in GaAs can be easily made a few p m  long so the assumption 
can be justified. 

The ballisticity of electron motion does not mean, of course, that it behaves as a 
true electron within the range of mean free path; it interacts not only with possible 
impurities, but with the crystalline lattice of the semiconductor material as well. By 
a standard solid-state physics argument, such an electron moves as a free particle with 
some effective mass m". For GaAs, e.g. we have m" = 0.067 me.  As a consequence, 
the quantum conduction channels created by the transverse confinement in such a wire 
are widely separated. In fact, only a few of them are contained in the conductivity 
band (Roukes et a1 1987, Harwitt and Harris 1987). In our model, the energy of the 
electron approaching the loop is assumed to coincide with the first transverse mode 
energy in the semiconductor wire. 

Under the ballisticity assumption, one is able to solve the one-particle problem, 
i.e. to deduce the transmission coefficient T ( E )  for an (effectively) free electron moving 
towards the loop with energy E. It also allows us to calculate the loop conductance, 
which is given by the formula 

(cf Landauer 1981); recall that & / e 2  = 12 906 Cl. 

3. The mathematical background 

For the sake of simplicity, the electrons will be assumed to be spinless. The state 
Hilbert space of our problem is then of the form 

x = L2(0, oO)@L2(0, 12)@L2(0, l,)@L2(-m, 0) (3.1) 
where the orientation of axes is chosen in such a way that allows us to describe the 
two junctions in a similar fashion. The central problem is how to choose the Hamil- 
tonian H of the model. Two requirements must be fulfilled: 

( a )  H is self-adjoint, 
( b )  if the wavefunction has a support separated from the junctions, then H describes 

the appropriate motion on the half-line or on the loop. 
Such an operator can be constructed by first taking a suitable pre-Hamiltonian Ho 

which is non-self-adjoint, the branching points of the graph being removed from its 
domain. The admissible Hamiltonians are then obtained as self-adjoint extensions of 
Ho . 
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The same method has been applied recently in various contexts (see, e.g., Albeverio 
et al 1984, 1988, Albeverio and Hoegh-Krohn 1981, Dittrich and Exner 1985, Exner 
and Seba 1987, 1988a, b, c, Kuperin et a1 1985). It may seem that by introducing the 
self-adjoint extension methods we burden our model with a complicated procedure 
which is not actually needed if one just has to write down appropriate boundary 
conditions connecting the wavefunctions on the legs of the graph. Even in simple 
cases, however, intuition may be a false guide. A fresh example (and in no sense a 
unique one) of such a mistake can be found in a recent paper by Bulka (1987) concerning 
the magnetoresistance of such a loop, where boundary conditions which look reasonable 
at a glance lead to a non-self-adjoint Hamiltonian, or in physical terms to probability 
non-conservation. 

The Hamiltonians describing a free motion on a branching graph have been studied 
in Exner and Seba (1988~).  In particular, we derived there the boundary conditions 
which specify the self-adjoint extensions of the pre-Hamiltonian Ho.  They can be 
used obviously for an electron moving under the influence of an external field as long 
as the interaction remains bounded. This is true in our case: we shall show a little 
later that the starting operator Ho may be chosen as 

with 

( 3 . 2 ~ )  

(3.2b) 

where Mj is the appropriate part of the configuration manifold and m" is the effective 
mass; furthermore, is a bounded function on the loop, j = 2,3, while V, = 0 on the 
leads, j = 1,4. 

In general, the deficiency indices of Ho are ( 6 , 6 )  so it has a vast family of self-adjoint 
extensions. We adopt the following further restrictions on the Hamiltonian H: 

(c) H is local in the sense that supp HU c supp U for all U E D ( H ) ,  
( d )  H is locally permutation invariant at each junction: if the support of U is 

sufficiently concentrated around one of the junctions, and Pij is the operator permuting 
the j th  and kth wire at the junction, then q k U  E D ( H )  and P,kHu = HP,,u. 

This last condition means that, if the electric field is switched off, the electron 
whose motion is governed by H does not distinguish between the wires provided it is 
close enough to the junction. 

Under conditions (c) and ( d ) ,  the self-adjoint extensions H are characterised by 
two pairs of real parameters, each of them referring to one junction. Most of the 
extensions can be expressed by the following boundary conditions: 

~ ~ ( 0 )  = A ,  U (0) + Bl ui (0 )  + B,  uS(0) 

u ~ ( O )  = Bl U (0) + AI U:( 0) + B1 U;( 0) ( 3 . 3 ~ )  

~g (0) = Bl U '1 (0) + B1 ~ i ( 0 )  + A1 u ; ( O )  

and 

(3.3b) 
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where u,(O), u;(O), U,(() and u;(l,) are understood as the limits from the appropriate 
side. With the chosen orientation of the axes, the two junctions are the same if 

A ,  = -A2 B , = - B z .  ( 3 . 4 )  

The conditions ( 3 . 3 )  do not exhaust all the operators H fulfilling the requirements 
( a ) - ( d ) .  There are two additional one-parameter classes of boundary conditions at 
each junction that also lead to a self-adjoint H and correspond to the cases when the 
conditions ( 3 . 3 )  become singular, namely 

A = B - C  with B +  +CO ( 3 . 5 ~ )  

for some C E R and 

A = $ D  - 2 B  with B +  * C O  ( 3 . 5 b )  

for some D E R .  
Next we must say something about the way in which the parameters specifying the 

junctions should be chosen. We start with the conjecture that our graph model 
represents a low-energy approximation to the more realistic description in which the 
electrons move as free particles (with the appropriate effective mass) on stripes (or 
tubes) instead of lines; it is suggested by the success of a similar idea for systems with 
point interactions (Albeverio et al 1988). The motion on branching stripes (or tubes) 
has been studied extensively in the electromagnetic and acoustic waveguide theory; 
the corresponding equations are the same as in the quantum mechanical case, up to 
the physical meaning of the spectral parameter and the wavefunctions involved. 

A natural conjecture is that the parameters appearing in the boundary conditions 
are related to the angles specifying the junction. It is not easy, however, to find the 
appropriate functions by a limiting procedure with the strip width tending to zero; we 
are going to discuss it in a separate publication. Some conditions can be drawn, 
however, without a lot of mathematics. Let us compare the results obtained numerically 
for the so-called Y junction (Mehran 1978) with the S matrices calculated for the 
corresponding three-legged graph in Exner and Seba (1988~).  For the Y junction, 
whose legs are of the same width, the zero-momentum limit is 

lim I ~ , , ( k ) l  = 13- 6,1. 
k-0 

It is exactly the same as for the S matrix referring to one of the 'exceptional' boundary 
conditidns ( 3 . 5 ) .  On the other hand, the zero-momentum limit of a Y junction with 
non-equivalent legs yields the total reflection, exactly as the S matrices referring to 
the boundary condition ( 3 . 3 ) .  Moreover, comparison of the low-energy behaviour 
shows, e.g., that one of the conditions ( 3 . 5 )  with either C = 0 or D = 0 corresponds to 
the totally symmetric Y junction (with 120" angle). Finally, a brief inspection of the 
low-energy behaviour of the S matrices corresponding to boundary conditions ( 3 . 3 )  
shows that in practical calculations the 'exceptional' cases ( 3 . 5 )  may be replaced by 
( 3 . 3 )  with A, B large enough. 

The last thing we must fix are the potentials V, appearing in ( 3 . 2 b ) .  A natural 
guess which can be supported by the standard quantisation procedure (Sniatycki 1980) 
is 

V,(x,) = - e 8 r , ( x , )  ( 3 . 6 )  
where y,(x,) marks the distance from a fixed equipotential line and 8 is the applied 
field intensity. Conventionally, we chose a zero value of the potential on the leads. 
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Unfortunately, the problem is more complicated. As mentioned above, the graph line 
substitutes thin stripes in our model and therefore the potentials should contain 
curvature-dependent terms (see, e.g., da Costa 1981, 1983, Jensen and Koppe 1971). 
Simple estimates show, however, that, for the semiconductor structures mentioned in 
the introduction, the ansatz (3.6) represents a good approximation. Let us remark that 
in other situations, curvature can produce interesting physical effects (Exner and Seba 
1987). 

4. The transmission coefficient 

Now we are ready to solve the scattering problem for the loop. We shall use the 
time-independent framework; then one has to find the function U = ( u l ,  u 2 ,  u 3 ,  u4) that 
belongs locally to the domain of the extension H chosen to play the role of Hamiltonian 
and fulfills 

uI(xl) = exp(-ikx,)+a exp(ikx,) ( 4 . 1 ~ )  

(4.lb) 

( 4 . 1 ~ )  

(4 . ld)  

( 4 . 2 ~ )  

(4.3a) 

and similarly g ,  , g ,  are the solutions of 

- (h2 /2m")g i (x3 )  + V3(X3)gk(X3) = @ k ( X 3 )  (4.26) 

corresponding to the boundary conditions 

g , (O)  = gX0) = 1 g : ( o )  = g2(0) = 0. (4.3b) 

The potentials V,, V3 are given by (3.5) as mentioned above. We shall also need the 
transfer matrices Hj = Hj(l,), j = 2,3, 

Using the above-mentioned solutions to (4.2), we may express the matrices as 

(4.4a) 

(4.4b) 

Our aim is to find the coefficient b, assuming that the functions (4.1) fulfil the 
boundary conditions (3.3). To solve this problem, first we express the coefficients c , ,  c2 
with the help of d , ,  d 2 .  The boundary conditions for the first junction yield the 
equations 

1 + a = -ikAl( 1 - a )  + c2B1 + d2B,  

c1 = -ikB1( 1 - a )  + c2A1 + d2B1 
d ,  = -ikB,( 1 - a )  + c2B1 + d 2 A , .  
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Excluding a from here, we get a system of two linear equations for c,, c2 which is 
solved by 

where 

( 4 . 6 ~ )  

and 

1 
= B,[ 1 + ik( B, - A,)] 

). (4.66) 
A,+ik(B:-A:) (B, -A,)[(A,+ B,)(1-ikA1)+2ikB: ’( 1-ikA, -A, -ik(B:-A:) 

The boundary conditions at the second junction yield the equations 

E, = E2A2+J2B2-ikbB2 

J1=E2B2+J2A2-ikbB2 

b = E2B2 + J2B2 - ikbA2 

where we have introduced 

and 

Excluding b from the above system: 

we arrive at equations for E,,  C2. They are solved by 

( 4 . 7 ~ )  

(4.7b) 

(4.8) 

where C2(k) is given by (4.66) with A, ,  B1 replaced by A2, B2. Now we are in the 
position to find the coefficients in (4.1 b, c). Notice that the matrices appearing in the 
above relations are non-singular; one finds easily that det Cj(k) = -1, and furthermore 
det II j  is the Wronskian of the corresponding solutions, and therefore non-zero. The 
relations (4.9,  (4.7) and (4.9) give 
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From here the coefficients d l ,  d2 may be found; the other three pairs of coefficients 
are then obtained from (4.7) and (4.9). In particular, we have 

( 4 . 1 0 ~ )  

(4.10b) 

provided the matrices in the square brackets are non-singular (it is sufficient that one 
of them is non-singular). Combining the relations (4.8) and (4.10), we get the necessary 
transmission coefficient 

(4.11) 

where E = h2k2/2m". In a similar way, the reflection coefficient at energy E is given 
by 

(4.12) 

5. Semiclassical expressions for the transfer matrices 

The relations (2.1) and (4.11) represent the solution to our problem. In order to 
calculate the conductivity, however, one must know the transfer matrices (4.4). They 
can be written down analytically for very few potentials, so one must look for another 
way. One possibility is to solve (4.2) numerically. Instead of that, we shall use here 
an analytically expressed but approximative solution. In fact, the WKB approximation 
is applicable to nearly all situations in our model with the exception of those when 
the energy is near the top of the potential barrier or a plateau in the 'upper' branch 
of the loop. We restrict our attention, however, to the simplest situation represented 
by the weak-jeld case when no tunnelling occurs (figure 2). This is true if 

8 < E / 2 a e  

I 

Figure 2. The potentials appearing in the Schrodinger equations (4.2). 
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where a is a characteristic size of the ‘upper’ branch, say the radius of the ring. Taking 
a = 2 x cm and the typical lowest transverse-mode energy mentioned in § 2, we 
get 8 <  l o3  V cm-’; as we shall see a little later, one can obtain interference minima 
before the tunnelling regime takes place. 

The WKB approximation may be applied if l (h /p j (x j ) ) ’ l<< 1, where 

p j ( x j )  = [ 2 m * ( E  - % ( x j ) ) ] ’ l 2 .  (5.2) 

Since p j ( x j )  = ( 2 m * E ) ’ / ’  in the weak-field case, it yields the condition 

( 2 m * E  3 / 2  
8 << 

m*eh (5 .3)  

For E and m* mentioned above, we therefore get the bound 8<< lo5 V cm-’ which is 
certainly satisfied in the weak-field case. 

The general WKB solution to ( 4 . 2 ~ )  is well known; it is only necessary to select the 
two solutions that fulfil the boundary conditions ( 4 . 3 ~ ) .  We obtain 

(5 .4a )  

(5 .4c)  

( 5 . 4 d )  

Substituting x2 = 1 2 ,  and using (4 .4b ) ,  we get the necessary expression of l12. The 
transfer matrix IT, is expressed in a similar way by means of p 3 ,  V, and V i .  

6. Conclusion 

Let us now comment on the result. A typical conductance plot for a loop of the 
sketched shape is plotted in figure 3 .  In accordance with the discussion of §3,  we 
choose here A, = B, = -A2 = - B 2  = lo4  A to describe the two totally symmetric junc- 
tions. We also choose E = 0.05 eV corresponding to a 200A GaAs wire (Harwitt and 
Harris 1987) and m* = 0.067 me. Varying the parameters that characterise the junctions, 
loop shape and energy E, we obtain other curves. The qualitative character does not 
change, however; the conductance always exhibits large oscillations with well distin- 
guished minima at reasonably low field intensities. 
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Figure 3. The conductance plot for GaAs for the 
sketched loop. 

As we have mentioned in the introduction, our results do not apply to metallic 
graphs where the electrons are screened from the electric field. On the other hand, 
there is no screening in ultrathin semiconductor wires; this can be seen, e.g., from the 
experimental results obtained by Harwit and Harris (1987), where the quantum well 
intersubband transition in a perpendicular electric field has been investigated. The 
screening in the quasi-one-dimensional quantum wires has also been treated theoreti- 
cally by Lai and Das Sarma (1986). 

Hence we can conclude that the prospect of constructing a new type of switching 
device (a ‘quantum interference transistor’) with the controlling voltage of the order 
of millivolts is fully realistic. Our results show that the conductance can exhibit very 
large and steep modulations, in particular for some non-symmetric loop shapes, and 
hence provide us with a true switch-off effect. This is obviously due to the fact that 
the thickness of the wires is much smaller than the size of the device, which allows us 
to model them by infinitely thin wires. On the other hand, for systems based on 
heterostructures which we have mentioned in B 2, the best conductance modulations 
obtained theoretically in Datta et a1 (1986) have been 1 : 4. 

The graph-type devices considered here are certainly sensitive to the loop shape, 
but this problem is rather a technical one and seems manageable with the high-precision 
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technologies available. On the other hand, an attractive possibility arises here, that 
one may be able to tailor the conductance plot by choosing the proper shape of loop. 
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